A priori error estimates for optimal control problems with pointwise constraints on the gradient of the state

نویسندگان

  • Christoph Ortner
  • W. Wollner
چکیده

We analyze a finite element approximation of an elliptic optimal control problem with pointwise bounds on the gradient of the state variable. We derive convergence rates if the control space is discretized implicitly by the state equation. In contrast to prior work we obtain these results directly from classical results for the W 1,∞-error of the finite element projection, without using adjoint information. If the control space is discretized directly, we first prove a regularity result for the optimal control to control the approximation error, based on which we then obtain analogous convergence rates. Mathematics Subject Classification (2000) 65K10 · 65N30 · 49K20 · 49M25

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

VARIATIONAL DISCRETIZATION AND MIXED METHODS FOR SEMILINEAR PARABOLIC OPTIMAL CONTROL PROBLEMS WITH INTEGRAL CONSTRAINT

The aim of this work is to investigate the variational discretization and mixed finite element methods for optimal control problem governed by semi linear parabolic equations with integral constraint. The state and co-state are approximated by the lowest order Raviart-Thomas mixed finite element spaces and the control is not discreted. Optimal error estimates in L2 are established for the state...

متن کامل

A Priori Error Estimates for Space-Time Finite Element Discretization of Parabolic Optimal Control Problems

In this article we summarize recent results on a priori error estimates for space-time finite element discretizations of linear-quadratic parabolic optimal control problems. We consider the following three cases: problems without inequality constraints, problems with pointwise control constraints, and problems with state constraints pointwise in time. For all cases, error estimates with respect...

متن کامل

A Priori Error Estimates for Space-Time Finite Element Discretization of Parabolic Optimal Control Problems Part II: Problems with Control Constraints

This paper is the second part of our work on a priori error analysis for finite element discretizations of parabolic optimal control problems. In the first part [18] problems without control constraints were considered. In this paper we derive a priori error estimates for space-time finite element discretizations of parabolic optimal control problems with pointwise inequality constraints on the...

متن کامل

A priori error estimates for optimal control problems with constraints on the gradient of the state on nonsmooth polygonal domains

In this article we are concerned with the finite element discretization of optimal control problems subject to a second order elliptic PDE and additional pointwise constraints on the gradient of the state. We will derive error estimates for the convergence of the cost functional under mesh refinement. Subsequently error estimates for the control and state variable are obtained. As an intermedia...

متن کامل

A priori error estimates for elliptic optimal control problems with bilinear state equation

In this paper a priori error analysis for the finite element discretization of an optimal control problem governed by an elliptic state equation is considered. The control variable enters the state equation as a coefficient and is subject to pointwise inequality constraints. We derive a priori error estimates for the discretization error in the control variable and confirm our theoretical resul...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Numerische Mathematik

دوره 118  شماره 

صفحات  -

تاریخ انتشار 2011